Dopamine induces a PI3-kinase-independent activation of Akt in striatal neurons: a new route to cAMP response element-binding protein phosphorylation.
نویسندگان
چکیده
Akt is classically described as a prosurvival serine/threonine kinase activated in response to trophic factors. After activation by phosphoinositide 3-kinase (PI3-kinase), it can translocate to the nucleus where it promotes specific genetic programs by catalyzing phosphorylation of transcription factors. We report here that both dopamine (DA) D1 (SKF38393) and D2 (quinpirole) agonist treatments rapidly increase, in primary striatal neurons in culture, phosphorylation levels of Akt on Thr(308), a residue that is critically involved in its kinase activity. These treatments also activate the extracellular signal-regulated kinase (ERK) pathway in the same population of striatal neurons. Induction of active, phospho-Thr(308) Akt by dopamine D1 and D2 agonists is insensitive to wortmannin and thus PI3-kinase independent, in contrast to growth factor-induced Akt activity. D1- and D2-induced phospho-Thr(308) Akt is decreased by the mitogen-activated protein kinase kinase (MEK) inhibitor, U0126, as well as by overexpression of a dominant-negative version of MEK, thus implicating the Ras/ERK signaling cascade in this process. Furthermore, overexpression of a mutant form of Akt that cannot be activated impaired cAMP response element-binding protein (CREB) phosphorylation induced by SKF38393 and quinpirole treatments. Activation of Akt on Thr(308) was also found in vivo in striatal neurons after acute administration of cocaine, a psychostimulant that strongly increases DA transmission. Thus, multiple intracellular pathways can transduce signals from dopamine receptors to CREB in striatal neurons, one of these being Akt. We propose that this signaling pathway plays a pivotal role in DA-induced regulation of gene expression and long-term neuronal adaptation in the striatum.
منابع مشابه
6-Hydroxydopamine lesions of rat substantia nigra up-regulate dopamine-induced phosphorylation of the cAMP-response element-binding protein in striatal neurons.
Destruction of the substantia nigra produces striatal D1 dopamine receptor supersensitivity without increasing receptor number or affinity, thus implicating postreceptor mechanisms. The nature of these mechanisms is unknown. Increased striatal c-fos expression ipsilateral to a unilateral lesion of the substantia nigra in rats treated with appropriate dopamine agonists provides a cellular marker...
متن کاملNotice of data fabrication in "Resveratrol-mediated activation of cAMP response element-binding protein through adenosine A3 receptor by Akt-dependent and -independent pathways".
A recent study documented a role of adenosine A(3)-Akt-cAMP response element-binding protein (CREB) survival signaling in resveratrol preconditioning of the heart. In this study, we demonstrate that resveratrol-mediated CREB activation can also occur through an Akt-independent pathway. Isolated rat hearts were perfused for 15 min with Krebs-Henseleit bicarbonate (KHB) buffer containing resverat...
متن کاملبررسی اثر افزایش cAMP بر فسفوریلاسیون پروتئین BAD در ردهی سلولی لوسمی لنفوبلاستیک حاد پیش سازB- (NALM-6) تیمارشده با دوکسوروبیسین
Kashiri M1, Safa M2, Kazemi A3 1Dept. of Hematology, Allied Medical School, Tehran University of Medical Sciences, Tehran, Iran 2Cellular and Molecular Research Center, Dept. of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran 3Dept. of Hematology & Blood Banking, School of Allied Medicine, Iran University of Medical Sciences, Tehran, I...
متن کاملEffect of Prenatal Stress on Offspring's Learning, Memory and Coping Strategies
Introduction: The prenatal stress is a key factor which affects the growth and function of the brain. Several studies have shown that prenatal stress induces deficits in learning and memory of the offspring. The prenatal stress alters the activity of neurotransmitters, such as noradrenaline, dopamine and serotonin, via over-activation of the hypothalamic–pituitary–adrenal axis. In addition, the...
متن کاملD(2) dopamine receptors induce mitogen-activated protein kinase and cAMP response element-binding protein phosphorylation in neurons.
Dopamine, by activating D(1)- and D(2)-class receptors, plays a significant role in regulating gene expression. Although much is known about D(1) receptor-regulated gene expression, there has been far less information on gene regulation mediated by D(2) receptors. In this study, we show that D(2) receptors can activate the mitogen-activated protein kinase (MAPK) and the cAMP response element-bi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 20 شماره
صفحات -
تاریخ انتشار 2002